论文标题
在刚性分析空间上的诱导等效性
Induction equivalence for equivariant D-modules on rigid analytic spaces
论文作者
论文摘要
我们证明了在刚性分析空间上共同允许等效的D模块的诱导等效性和喀西瓦拉等效性。这使我们能够在经典点的单个轨道中完全对这些对象进行分类。作为应用程序,我们使用本地分析性的贝林森 - 伯恩斯坦等效性来构建某些紧凑型半神经P-ADIC LIE群体的拓扑不可还原的局部分析表征的新例子。
We prove an Induction Equivalence and a Kashiwara Equivalence for coadmissible equivariant D-modules on rigid analytic spaces. This allows us to completely classify such objects with support in a single orbit of a classical point with co-compact stabiliser. As an application, we use the locally analytic Beilinson-Bernstein equivalence to construct new examples of large families of topologically irreducible locally analytic representations of certain compact semisimple p-adic Lie groups.