论文标题

DV-CONVNET:具有动态体素化和3D组卷积的点云上的完全卷积深度学习

DV-ConvNet: Fully Convolutional Deep Learning on Point Clouds with Dynamic Voxelization and 3D Group Convolution

论文作者

Su, Zhaoyu, Tan, Pin Siang, Chow, Junkang, Wu, Jimmy, Cheong, Yehur, Wang, Yu-Hsing

论文摘要

由于组件点的随机性和稀疏性,3D点云解释是一项具有挑战性的任务。 PointNet和PointCNN等最近提出的方法都集中在从点坐标中学习形状描述作为点的输入特征,这通常涉及复杂的网络体系结构。在这项工作中,我们将注意力重新引起了标准的3D卷积,以进行有效的3D点云解释。我们使用我们的动态体素化操作和自动适应性体素化的分辨率,而不是将整个点云转换为Voxel表示,而是将点云的子段的子构素化为点云的子部分。此外,我们将3D组卷积纳入我们致密的卷积内核实施中,以进一步利用点云的旋转不变特征。从其简单的全面架构中受益,我们的网络能够以相当快的速度运行和收敛,而与几个基准数据集中的最先进方法相比,与最先进的方法相比,在PAR或什至更高的性能。

3D point cloud interpretation is a challenging task due to the randomness and sparsity of the component points. Many of the recently proposed methods like PointNet and PointCNN have been focusing on learning shape descriptions from point coordinates as point-wise input features, which usually involves complicated network architectures. In this work, we draw attention back to the standard 3D convolutions towards an efficient 3D point cloud interpretation. Instead of converting the entire point cloud into voxel representations like the other volumetric methods, we voxelize the sub-portions of the point cloud only at necessary locations within each convolution layer on-the-fly, using our dynamic voxelization operation with self-adaptive voxelization resolution. In addition, we incorporate 3D group convolution into our dense convolution kernel implementation to further exploit the rotation invariant features of point cloud. Benefiting from its simple fully-convolutional architecture, our network is able to run and converge at a considerably fast speed, while yields on-par or even better performance compared with the state-of-the-art methods on several benchmark datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源