论文标题

使用放射线特征的脑肿瘤存活预测

Brain Tumor Survival Prediction using Radiomics Features

论文作者

Yousaf, Sobia, Anwar, Syed Muhammad, RaviPrakash, Harish, Bagci, Ulas

论文摘要

被诊断为脑肿瘤的患者的手术计划取决于其存活预后。预后不良可能需要更具侵略性的治疗和治疗计划,而有利的预后可能会导致危险的手术计划。因此,准确的生存预后是治疗计划中的重要一步。最近,深度学习方法已被广泛用于脑肿瘤分割,然后使用深度特征进行预后。但是,基于放射线学的研究表明,使用工程/手工制作的功能显示了更多的希望。在本文中,我们提出了一种三步的多级生存预后方法。在第一阶段,我们提取与来自多个磁共振图像方式的肿瘤区域相对应的图像切片。然后,我们从这些2D切片中提取放射线特征。最后,我们培训机器学习分类器以执行分类。我们使用随机森林分类器评估了我们提出的方法,并在公共可用的Brats 2019数据上评估了76.5%的准确性,精度为74.3%,据我们所知,这是迄今为止报告的最高结果。此外,我们确定有助于改善预测的最重要特征。

Surgery planning in patients diagnosed with brain tumor is dependent on their survival prognosis. A poor prognosis might demand for a more aggressive treatment and therapy plan, while a favorable prognosis might enable a less risky surgery plan. Thus, accurate survival prognosis is an important step in treatment planning. Recently, deep learning approaches have been used extensively for brain tumor segmentation followed by the use of deep features for prognosis. However, radiomics-based studies have shown more promise using engineered/hand-crafted features. In this paper, we propose a three-step approach for multi-class survival prognosis. In the first stage, we extract image slices corresponding to tumor regions from multiple magnetic resonance image modalities. We then extract radiomic features from these 2D slices. Finally, we train machine learning classifiers to perform the classification. We evaluate our proposed approach on the publicly available BraTS 2019 data and achieve an accuracy of 76.5% and precision of 74.3% using the random forest classifier, which to the best of our knowledge are the highest reported results yet. Further, we identify the most important features that contribute in improving the prediction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源