论文标题

偶极液滴密度和激发的温度依赖性

Temperature Dependence of the Density and Excitations of Dipolar Droplets

论文作者

Ozturk, S. Furkan, Aybar, Enes, Oktel, M. O.

论文摘要

最近已经观察到了偶极和两种成分的胶体气体稳定的超速气体的液滴状态。这些系统提出了一种新型的平衡形式,其中平均场水平处的不稳定性通过较高的相关性使液滴状态敏感波动探针捕捉。在最近的一篇论文中,我们认为,即使在低温密度远小于冷凝水密度的低温下,热波动也可以对液滴发挥重要作用。我们使用了Hartree-fock-Bogoliubov理论以及局部密度近似进行波动,以获得普遍的Pitaevskii(GP)方程,并用高斯变异的ANSATZ求解了它,以表明低密度状态和液滴状态之间的过渡可以通过温度显着修改。在本文中,我们首先采用时间分配光谱法以数值方式求解相同的GP方程,以检查高斯变异ANSATZ的有效性。我们的数值结果与高斯Ansatz非常吻合,以实现大型参数状态,并表明气体的密度是通过在煎饼形云与滴头之间突然过渡的温度最强的变化。对于雪茄形的冷凝物,就像在最近的ER实验中一样,在整个平滑过渡过程中,密度对温度的依赖性仍然很小。然后,我们考虑使用时间依赖的高斯差异ANSATZ和实时数值演化的温度对液滴集体振荡频率的影响。我们发现,振荡频率显着取决于接近实验相关温度状态($ \ simeq 100 $ nk)的过渡的温度。

Droplet states of ultracold gases which are stabilized by fluctuations have recently been observed for dipolar and two component Bose gases. These systems present a novel form of equilibrium where an instability at the mean field level is arrested by higher order correlations making the droplet states sensitive probes of fluctuations. In a recent paper, we argued that thermal fluctuations can play an important role for droplets even at low temperatures where the non-condensed density is much smaller than the condensate density. We used the Hartree-Fock-Bogoliubov theory together with local density approximation for fluctuations to obtain a generalized Gross Pitaevskii (GP) equation and solved it with a Gaussian variational ansatz to show that the transition between the low density and droplet states can be significantly modified by the temperature. In this paper, we first solve the same GP equation numerically with a time splitting spectral method to check the validity of the Gaussian variational ansatz. Our numerical results are in good agreement with the Gaussian ansatz for a large parameter regime and show that the density of the gas is most strongly modified by temperature near the abrupt transition between a pancake shaped cloud and the droplet. For cigar shaped condensates, as in the recent Er experiments, the dependence of the density on temperature remains quite small throughout the smooth transition. We then consider the effect of temperature on the collective oscillation frequencies of the droplet using both a time dependent Gaussian variational ansatz and real time numerical evolution. We find that the oscillation frequencies depend significantly on the temperature close to the transition for the experimentally relevant temperature regime ($\simeq 100$nK).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源