论文标题
3D房间布局估计超出曼哈顿世界假设
3D Room Layout Estimation Beyond the Manhattan World Assumption
论文作者
论文摘要
从单个图像中预测3D房间布局是许多应用程序的挑战性任务。在本文中,我们提出了一种新的培训和后处理方法,用于3D房间布局估计,该方法建立在最新的3D房间布局估计模型上。实验结果表明,我们的方法在预测可见的房间布局方面优于最先进的方法。我们的方法已获得2020年3D Vision Workshop的整体场景结构的第三名。
Predicting 3D room layout from single image is a challenging task with many applications. In this paper, we propose a new training and post-processing method for 3D room layout estimation, built on a recent state-of-the-art 3D room layout estimation model. Experimental results show our method outperforms state-of-the-art approaches by a large margin in predicting visible room layout. Our method has obtained the 3rd place in 2020 Holistic Scene Structures for 3D Vision Workshop.