论文标题

$η^2 $和$ \barη^2 $四分之一的高旋转顶点的自旋本地性

Spin-Locality of $η^2$ and $\barη^2$ Quartic Higher-Spin Vertices

论文作者

Didenko, V. E., Gelfond, O. A., Korybut, A. V., Vasiliev, M. A.

论文摘要

高旋转理论包含一个复杂的耦合参数$η$。不同的高旋转顶点与$η$的不同功率及其复杂的共轭$ \ barη$相关。使用$ z $ - 量的引理(控制高旋转方程的自旋本地性),我们表明对零形式的$ b(z; y; k)$的三阶贡献承认了$ z $ domination的形式,这会导致$η^2 $和$ \ bar^2 $和$ \ barη^2 $ speptions的$ h^2 $和$hā^2 $ septions的旋转位置。这些顶点尤其包括$η^2 $和$ \barη^2 $部分的$ ϕ^4 $ scalar field顶点。

Higher-spin theory contains a complex coupling parameter $η$. Different higher-spin vertices are associated with different powers of $η$ and its complex conjugate $\bar η$. Using $Z$-dominance Lemma, that controls spin-locality of the higher-spin equations, we show that the third-order contribution to the zero-form $B(Z;Y;K)$ admits a $Z$-dominated form that leads to spin-local vertices in the $η^2$ and $\bar η^2$ sectors of the higher-spin equations. These vertices include, in particular, the $η^2$ and $\bar η^2$ parts of the $ϕ^4$ scalar field vertex.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源