论文标题

冯·诺伊曼(Von Neumann)的无隐藏变量定理

Von Neumann's No Hidden Variable Theorem

论文作者

Revzen, Michael

论文摘要

冯·诺伊曼(Von Neumann)使用4个假设来得出量子力学(QM)的希尔伯特空间(HS)公式。在这个理论中,不存在自由集合。为了适应允许无散集合的量子力学理论,需要修改一些假设。 QM的现有表述,相位空间(PS)公式允许无散的合奏,因此被限定为隐藏的变量理论。在PS理论中,我们确定违反的假设(文本中称为I)是要求数量$ \ Mathbb {r} $的值r的值r表示数量$ f(\ Mathbb {r})$的值f(r)。我们注意到,由于在理论之间的1-1对应关系所必需的HS理论中,c-number隐藏的可变理论中的跟踪是由于跟踪c-number隐藏的变量理论而产生的。

Von Neumann use 4 assumptions to derive the Hilbert space (HS) formulation of quantum mechanics (QM). Within this theory dispersion free ensembles do not exist. To accommodate a theory of quantum mechanics that allow dispersion free ensemble some of the assumptions need be modified. An existing formulation of QM, the phase space (PS) formulation allow dispersion free ensembles and thus is qualifies as an hidden variable theory. Within the PS theory we identify the violated assumption (dubbed I in the text) to be the one that requires that the value r for the quantity $\mathbb{R}$ implies the value f(r) for the quantity $f(\mathbb{R})$. We note that this violation arise due to tracking within c-number hidden variable theory of the operator ordering involved in HS theory as is required for a 1-1 correspondence between the theories.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源