论文标题

精致的亨氏经营者的不平等和规范不平等现象

Refined Heinz operator inequalities and norm inequalities

论文作者

Ghazanfari, Amir Ghasem

论文摘要

在本文中,我们研究了亨氏和埃尔米特 - 哈达玛德的不平等现象。我们得出了涉及单位不变规范的这些不平等的整个改进,从而改善了文献所知的一些最新结果。 我们还证明,如果$ a,b,x \ in m_n(\ mathbb {c})$,这样$ a $ and $ b $是正定确定的,而$ f $是$(0,\ infty)$的操作员单调函数。然后\ begin {equination*} ||| f(a)x-xf(b)||| \ leq \ leq \ max \ {|| f'(a)||,|| || f'(b)|| \} || \} ||| ax-xb ||||。 \ end {等式*}最后,我们获得了亨氏操作员不平等的一系列改进,这是Kittaneh andKrnić证明的。

In this article we study the Heinz and Hermite-Hadamard inequalities. We derive the whole series of refinements of these inequalities involving unitarily invariant norms, which improve some recent results, known from the literature. We also prove that if $A , B, X\in M_n(\mathbb{C})$ such that $A$ and $B$ are positive definite and $f$ is an operator monotone function on $(0,\infty)$. Then \begin{equation*} |||f(A)X-Xf(B)|||\leq \max\{||f'(A)||, ||f'(B)||\} |||AX-XB|||. \end{equation*} Finally we obtain a series of refinements of the Heinz operator inequalities, which were proved by Kittaneh and Krnić.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源