论文标题

从几个样品中进行机器学习的调查

A Survey on Machine Learning from Few Samples

论文作者

Lu, Jiang, Gong, Pinghua, Ye, Jieping, Zhang, Jianwei, Zhang, Changshui

论文摘要

在机器学习领域,很少有样本学习(FSL)具有重要意义,并且具有挑战性。从很少成功的样本中学习和概括的能力是将人工智能和人类智能区分开的明显界限,因为人类可以轻松地从一个或几个示例中从一个或几个示例中确定自己的认知到新颖性,而机器学习算法通常会带来数百万种或数千个或数千个监督样本以保证普遍化的能力。尽管历史悠久,历史可以追溯到2000年代初,并且近年来随着深度学习技术的蓬勃发展,FSL的调查或评论很少,直到现在。在这种情况下,我们广泛回顾了从2000年代到2019年的FSL的300多篇论文,并为FSL提供了及时,全面的调查。在这项调查中,我们回顾了FSL的进化历史以及当前的进度,将FSL方法分类为基于生成模型的基于生成模型的原则上的类型,并特别强调基于元学习的FSL方法。我们还总结了FSL最近有几个新兴的扩展主题,并回顾了这些主题的最新进展。此外,我们强调了重要的FSL应用程序,涵盖了计算机视觉,自然语言处理,音频和语音,强化学习和机器人,数据分析等许多研究热点。

Few sample learning (FSL) is significant and challenging in the field of machine learning. The capability of learning and generalizing from very few samples successfully is a noticeable demarcation separating artificial intelligence and human intelligence since humans can readily establish their cognition to novelty from just a single or a handful of examples whereas machine learning algorithms typically entail hundreds or thousands of supervised samples to guarantee generalization ability. Despite the long history dated back to the early 2000s and the widespread attention in recent years with booming deep learning technologies, little surveys or reviews for FSL are available until now. In this context, we extensively review 300+ papers of FSL spanning from the 2000s to 2019 and provide a timely and comprehensive survey for FSL. In this survey, we review the evolution history as well as the current progress on FSL, categorize FSL approaches into the generative model based and discriminative model based kinds in principle, and emphasize particularly on the meta learning based FSL approaches. We also summarize several recently emerging extensional topics of FSL and review the latest advances on these topics. Furthermore, we highlight the important FSL applications covering many research hotspots in computer vision, natural language processing, audio and speech, reinforcement learning and robotic, data analysis, etc. Finally, we conclude the survey with a discussion on promising trends in the hope of providing guidance and insights to follow-up researches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源