论文标题

Riemann Zeta功能的素数和非平凡零的复发公式

The recurrence formulas for primes and non-trivial zeros of the Riemann zeta function

论文作者

Kawalec, Artur

论文摘要

在本文中,我们从素数和非平凡零的角度探讨了Riemann Zeta功能。我们开发了$ n $ th+1 prime的Golomb的复发公式,假设(RH),我们为Riemann Zeta函数的$ n $ th+1非平凡零提出了一个分析复发公式。因此,必须知道所有非平凡的零零,以生成$ n $ th+1的非平凡零。我们还基于Prime Zeta函数探讨了素的复发公式的变化,这将是基于次级Zeta函数的非平凡零零复发公式的基础。在最后一部分中,我们回顾了提出的公式,并概述了素数和非平凡零之间的二元性。所提出的公式意味着所有素数可以转换为单个的非平凡零(假设RH),相反,所有非平凡的零可以转换为单个素数(不是假设RH)。同样,在本文中,我们总结了数值计算并验证提出的结果以高精度。

In this article, we explore the Riemann zeta function with a perspective on primes and non-trivial zeros. We develop the Golomb's recurrence formula for the $n$th+1 prime, and assuming (RH), we propose an analytical recurrence formula for the $n$th+1 non-trivial zero of the Riemann zeta function. Thus all non-trivial zeros up the $n$th order must be known to generate the $n$th+1 non-trivial zero. We also explore a variation of the recurrence formulas for primes based on the prime zeta function, which will be a basis for the development of the recurrence formulas for non-trivial zeros based on the secondary zeta function. In the last part, we review the presented formulas and outline the duality between primes and non-trivial zeros. The proposed formula implies that all primes can be converted into an individual non-trivial zero (assuming RH), and conversely, all non-trivial zeros can be converted into an individual prime (not assuming RH). Also, throughout this article, we summarize numerical computation and verify the presented results to high precision.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源