论文标题

约旦身份的斐波那契身份

Fibonacci identities from Jordan Identities

论文作者

Alzate, Santiago, Correa, Oscar, Flórez, Rigoberto

论文摘要

在本文中,我们连接了两种良好的理论,即斐波那契数和约旦代数。我们提供了一系列来自文献的矩阵,用于获得二阶和多项式序列的复发关系。我们还提供了一些特殊的约旦代数中知名的身份。矩阵在这两种理论之间起着桥梁的作用。提到的矩阵连接数学的两个领域,特殊的约旦代数和复发关系,以获得斐波那契数,卢卡斯数,佩尔数,二项式变换,tribonacci数字和多项式序列的新身份和经典身份。本文中的身份列表仅包含一些读者可以使用此技术找到的许多示例。

In this paper, we connect two well established theories, the Fibonacci numbers and the Jordan algebras. We give a series of matrices, from literature, used to obtain recurrence relations of second-order and polynomial sequences. We also give some identities known in special Jordan Algebras. The matrices play a bridge role between both theories. The mentioned matrices connect both areas of mathematics, special Jordan algebras and recurrence relations, to obtain new identities and classic identities in Fibonacci numbers, Lucas numbers, Pell numbers, binomial transform, tribonacci numbers, and polynomial sequences among others. The list of identities in this paper contains just a few examples of many that the reader can find using this technique.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源