论文标题

PAC增强学习算法用于通用马尔可夫游戏

PAC Reinforcement Learning Algorithm for General-Sum Markov Games

论文作者

Zehfroosh, Ashkan, Tanner, Herbert G.

论文摘要

本文介绍了Markov Games的近似正确(PAC)多代理增强学习(MARL)算法的理论框架。本文使用延迟Q学习的想法为著名的NASH Q学习算法提供了扩展,以构建用于通用 - 马尔可夫游戏的新的PAC MARL算法。除了指导可证明的PAC MARL算法的设计外,该框架还可以检查任意MARL算法是否为PAC。比较数值结果证明了性能和鲁棒性。

This paper presents a theoretical framework for probably approximately correct (PAC) multi-agent reinforcement learning (MARL) algorithms for Markov games. The paper offers an extension to the well-known Nash Q-learning algorithm, using the idea of delayed Q-learning, in order to build a new PAC MARL algorithm for general-sum Markov games. In addition to guiding the design of a provably PAC MARL algorithm, the framework enables checking whether an arbitrary MARL algorithm is PAC. Comparative numerical results demonstrate performance and robustness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源