论文标题

对智能反射表面的深度学习体系结构的调查

A Survey of Deep Learning Architectures for Intelligent Reflecting Surfaces

论文作者

Elbir, Ahmet M., Mishra, Kumar Vijay

论文摘要

智能反射表面(IRS)最近对无线通信受到了极大的关注,因为它降低了常规大型阵列的硬件复杂性,物理尺寸,重量和成本。但是,IRS的部署需要处理基站(BS)和用户之间的多个渠道链接。此外,BS和IRS波束形成器需要关节设计,其中必须快速重新配置IRS元素。数据驱动的技术(例如深度学习(DL))对于应对这些挑战至关重要。 DL的较低计算时间和无模型性质使其与数据瑕疵和环境变化有关。在物理层上,DL已被证明可用于IRS信号检测,通道估计以及使用诸如监督,无监督和强化学习等体系结构进行主动/被动光束成型。本文提供了这些技术,用于设计基于DL的IRS辅助无线系统。

Intelligent reflecting surfaces (IRSs) have recently received significant attention for wireless communications because it reduces the hardware complexity, physical size, weight, and cost of conventional large arrays. However, deployment of IRS entails dealing with multiple channel links between the base station (BS) and the users. Further, the BS and IRS beamformers require a joint design, wherein the IRS elements must be rapidly reconfigured. Data-driven techniques, such as deep learning (DL), are critical in addressing these challenges. The lower computation time and model-free nature of DL makes it robust against the data imperfections and environmental changes. At the physical layer, DL has been shown to be effective for IRS signal detection, channel estimation and active/passive beamforming using architectures such as supervised, unsupervised and reinforcement learning. This article provides a synopsis of these techniques for designing DL-based IRS-assisted wireless systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源