论文标题

通过分割的视觉对象跟踪图形卷积网络

Visual Object Tracking by Segmentation with Graph Convolutional Network

论文作者

Jiang, Bo, Zhang, Panpan, Huang, Lili

论文摘要

基于细分的跟踪已在计算机视觉和多媒体中积极研究。通常为此任务开发基于超级像素的对象细分和跟踪方法。但是,他们独立执行特征表示和学习超级像素的学习,这可能会导致次优结果。在本文中,我们建议利用基于超级像素的对象跟踪的图形卷积网络(GCN)模型。提出的模型提供了一个通用的端到端框架,该框架集成了i)标签线性预测,ii)每个超级像素的结构感知特征信息在一起,以获得对象分割并进一步提高跟踪的性能。拟议的GCN方法的主要好处有两个主要方面。首先,它提供了一种有效的端到端方法来利用目标对象分割的空间和时间一致性约束。其次,它利用混合的图形卷积模块来学习上下文感知和歧视性特征,用于超像素表示和标签。已经开发了一种有效的算法来优化所提出的模型。在五个数据集上进行的广泛实验表明,我们的方法在现有的替代方法中获得了更好的性能。

Segmentation-based tracking has been actively studied in computer vision and multimedia. Superpixel based object segmentation and tracking methods are usually developed for this task. However, they independently perform feature representation and learning of superpixels which may lead to sub-optimal results. In this paper, we propose to utilize graph convolutional network (GCN) model for superpixel based object tracking. The proposed model provides a general end-to-end framework which integrates i) label linear prediction, and ii) structure-aware feature information of each superpixel together to obtain object segmentation and further improves the performance of tracking. The main benefits of the proposed GCN method have two main aspects. First, it provides an effective end-to-end way to exploit both spatial and temporal consistency constraint for target object segmentation. Second, it utilizes a mixed graph convolution module to learn a context-aware and discriminative feature for superpixel representation and labeling. An effective algorithm has been developed to optimize the proposed model. Extensive experiments on five datasets demonstrate that our method obtains better performance against existing alternative methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源