论文标题
海洋非kolmogorov光学湍流和球形波传播
Oceanic non-Kolmogorov optical turbulence and spherical wave propagation
论文作者
论文摘要
湍流培养基中的光传播在折射率波动的时空功率光谱的帮助下进行了研究。特别是,对于天然水湍流,基于经典的Kolmogorov假设,已经开发了几种空间功率光谱的模型。然而,正如当前广泛接受的那样,正如大气光学方面的最新发展所暗示的那样,非kolmogorov湍流制度在分层流场中也很常见。到目前为止,所有针对非kolmogorov光学湍流开发的模型均与大气研究有关,因此,仅涉及一个偏移的标量,例如温度。我们将海洋空间功率谱(基于两个趋势标量,温度和盐度浓度)概括为非科尔莫格罗夫湍流制度,并借助所谓的“上限限制”,并采用了两个前流标量的光谱相关性概念。拟议的功率谱可以处理一般的非kolmogorov,各向异性的湍流,但如果将温度和盐度的功率定律指数设置为11/3,并且各向异性系数设置为统一,则可以减少对Kolmogorov的各向同性情况。为了显示新频谱的应用,我们得出了球形波的二阶相互相干功能的表达,并检查其相干半径(以标量和矢量形式)来表征湍流干扰。我们的数值计算表明,球形波的统计数据随温度和盐度非Kolmogorov功率定律指数和温度 - 含量光谱相关系数的统计数有很大差异。设想引入的频谱对非经典天然水的理论分析和实验测量具有重要意义。
Light propagation in turbulent media is conventionally studied with the help of the spatio-temporal power spectra of the refractive index fluctuations. In particular, for natural water turbulence several models for the spatial power spectra have been developed based on the classic, Kolmogorov postulates. However, as currently widely accepted, non-Kolmogorov turbulent regime is also common in the stratified flow fields, as suggested by recent developments in atmospheric optics. Until now all the models developed for the non-Kolmogorov optical turbulence were pertinent to atmospheric research and, hence, involved only one advected scalar, e.g., temperature. We generalize the oceanic spatial power spectrum, based on two advected scalars, temperature and salinity concentration, to the non-Kolmogorov turbulence regime, with the help of the so-called "Upper-Bound Limitation" and by adopting the concept of spectral correlation of two advected scalars. The proposed power spectrum can handle general non-Kolmogorov, anisotropic turbulence but reduces to Kolmogorov, isotropic case if the power law exponents of temperature and salinity are set to 11/3 and anisotropy coefficient is set to unity. To show the application of the new spectrum, we derive the expression for the second-order mutual coherence function of a spherical wave and examine its coherence radius (in both scalar and vector forms) to characterize the turbulent disturbance. Our numerical calculations show that the statistics of the spherical wave vary substantially with temperature and salinity non-Kolmogorov power law exponents and temperature-salinity spectral correlation coefficient. The introduced spectrum is envisioned to become of significance for theoretical analysis and experimental measurements of non-classic natural water double-diffusion turbulent regimes.