论文标题

在标记的树图上注意

Note on the Labelled tree graphs

论文作者

Feng, Bo, Zhang, Yaobo

论文摘要

在树级振幅的CHY框架中,双活动标量理论发挥了基本作用,因为它为所有其他理论提供了壳上的Feynman图。最近,在Arxiv:1708.08701中,“标记的树图”给出了双聚体标量理论的有趣概括,与双活动标量表理论相比,它具有许多相似性。在本说明中,我们研究了来自两个不同天使的标记树图。在注释的第一部分中,我们表明我们可以组织所有Cubic Feynman图,这些图由标记的树图生成的“有效的Feynman图”。在新图片中,整个理论的极点结构更加明显。在第二部分中,我们概括了双连接标量表理论中“挑选极”的作用,将仅产生简单极点的一般Chy-Integrands。

In the CHY-frame for the tree-level amplitudes, the bi-adjoint scalar theory has played a fundamental role because it gives the on-shell Feynman diagrams for all other theories. Recently, an interesting generalization of the bi-adjoint scalar theory has been given in arXiv:1708.08701 by the "Labelled tree graphs", which carries a lot of similarity comparing to the bi-adjoint scalar theory. In this note, we have investigated the Labelled tree graphs from two different angels. In the first part of the note, we have shown that we can organize all cubic Feynman diagrams produces by the Labelled tree graphs to the "effective Feynman diagrams". In the new picture, the pole structure of the whole theory is more manifest. In the second part, we have generalized the action of "picking pole" in the bi-adjoint scalar theory to general CHY-integrands which produce only simple poles.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源