论文标题

Lorentzian Peak锐化和NMR光谱的稀疏盲源分离

Lorentzian Peak Sharpening and Sparse Blind Source Separation for NMR Spectroscopy

论文作者

Sun, Yuanchang, Xin, Jack

论文摘要

在本文中,我们引入了一种用于非负和重叠数据的盲源分离(BSS)的预处理技术。对于核磁共振光谱(NMR),NAANAA和NUZILLARD(NN)的经典方法要求源信号在某些位置不重叠,而它们可以在其他地方相互重叠。 NN的方法与具有独立峰(SAP)的数据信号很好地搭配。但是,SAP并不能完全适用于现实的NMR光谱。违反SAP通常会在NN的分离结果中引入错误或工件。为了解决这个问题,这里基于洛伦兹峰形状和加权峰锋利,在这里开发了预处理技术。这个想法是将原始峰信号与其加权负二阶导数叠加。由此产生的尖锐(较窄且更高)的峰使NN的方法可以在更轻松的SAP条件下工作,即所谓的主要峰状况(DPS),并提供改进的结果。为了在保留数据非阴性的同时获得最佳的锐化,我们证明了权重参数的上限并提出了选择标准。 NMR光谱数据的数值实验表明我们所提出的方法的性能令人满意。

In this paper, we introduce a preprocessing technique for blind source separation (BSS) of nonnegative and overlapped data. For Nuclear Magnetic Resonance spectroscopy (NMR), the classical method of Naanaa and Nuzillard (NN) requires the condition that source signals to be non-overlapping at certain locations while they are allowed to overlap with each other elsewhere. NN's method works well with data signals that possess stand alone peaks (SAP). The SAP does not hold completely for realistic NMR spectra however. Violation of SAP often introduces errors or artifacts in the NN's separation results. To address this issue, a preprocessing technique is developed here based on Lorentzian peak shapes and weighted peak sharpening. The idea is to superimpose the original peak signal with its weighted negative second order derivative. The resulting sharpened (narrower and taller) peaks enable NN's method to work with a more relaxed SAP condition, the so called dominant peaks condition (DPS), and deliver improved results. To achieve an optimal sharpening while preserving the data nonnegativity, we prove the existence of an upper bound of the weight parameter and propose a selection criterion. Numerical experiments on NMR spectroscopy data show satisfactory performance of our proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源