论文标题
乘车系统的时空层次层次自适应调度
Spatio-Temporal Hierarchical Adaptive Dispatching for Ridesharing Systems
论文作者
论文摘要
如今,乘车共享已成为在线乘车平台(例如Uber和Didi Chuxing)提供的最受欢迎的服务之一。现有的乘车共享平台采用了以统一时间间隔派遣整个城市订单的策略。但是,现实世界中乘车系统中的时空阶分布不平衡表明,这种方法在实践中是次优的。因此,在本文中,我们利用自适应调度间隔,以在保证最大乘客等待时间的保证下提高平台的利润。具体来说,我们提出了一种分层方法,该方法生成了适合共享相同调度间隔的地理区域群,然后在线决策选择适当的时空实例以在每个空间群集中进行订单调度。从技术上讲,我们证明了为在线自适应间隔问题设计恒定竞争性比例算法的可能性,并在部分甚至零以后的订单知识下提出在线算法,从而大大提高平台利润,从而超过现有方法的利润。我们使用大规模乘车订单数据集进行了广泛的实验,该数据集包含了中国北京的所有超过350万个乘车共享订单,并由Didi Chuxing从2018年10月1日至10月31日收到。实验结果表明,我们提出的算法算法超过现有方法。
Nowadays, ridesharing has become one of the most popular services offered by online ride-hailing platforms (e.g., Uber and Didi Chuxing). Existing ridesharing platforms adopt the strategy that dispatches orders over the entire city at a uniform time interval. However, the uneven spatio-temporal order distributions in real-world ridesharing systems indicate that such an approach is suboptimal in practice. Thus, in this paper, we exploit adaptive dispatching intervals to boost the platform's profit under a guarantee of the maximum passenger waiting time. Specifically, we propose a hierarchical approach, which generates clusters of geographical areas suitable to share the same dispatching intervals, and then makes online decisions of selecting the appropriate time instances for order dispatch within each spatial cluster. Technically, we prove the impossibility of designing constant-competitive-ratio algorithms for the online adaptive interval problem, and propose online algorithms under partial or even zero future order knowledge that significantly improve the platform's profit over existing approaches. We conduct extensive experiments with a large-scale ridesharing order dataset, which contains all of the over 3.5 million ridesharing orders in Beijing, China, received by Didi Chuxing from October 1st to October 31st, 2018. The experimental results demonstrate that our proposed algorithms outperform existing approaches.