论文标题

链网:在合成通道损伤下学习调制分类的深层模型

Chain-Net: Learning Deep Model for Modulation Classification Under Synthetic Channel Impairment

论文作者

Huynh-The, Thien, Doan, Van-Sang, Hua, Cam-Hao, Pham, Quoc-Viet, Kim, Dong-Seong

论文摘要

调制分类是物理层中信号检测和解调之间的中间过程,现在引起了认知无线电场的更加兴趣,其中该性能由人工智能算法提供支持。但是,大多数现有的常规方法构成有效学习弱歧视性调制模式的障碍。本文通过利用深度学习来捕获多尺度特征表示的调制信号的有意义信息,提出了一种可靠的调制分类方法。为此,开发了一种新型的卷积神经网络的结构,即链式网络,它是在两个处理流中组织的各种不对称内核,并通过深度促进和元素的添加来相关,以优化特征利用率。该网络通过14个具有挑战性的调制格式的大数据集进行评估,包括模拟和高级数字技术。仿真结果表明,链式网络可鲁棒地对构成合成通道恶化的无线电信号进行调制,并且比其他深网的进一步性能更好。

Modulation classification, an intermediate process between signal detection and demodulation in a physical layer, is now attracting more interest to the cognitive radio field, wherein the performance is powered by artificial intelligence algorithms. However, most existing conventional approaches pose the obstacle of effectively learning weakly discriminative modulation patterns. This paper proposes a robust modulation classification method by taking advantage of deep learning to capture the meaningful information of modulation signal at multi-scale feature representations. To this end, a novel architecture of convolutional neural network, namely Chain-Net, is developed with various asymmetric kernels organized in two processing flows and associated via depth-wise concatenation and element-wise addition for optimizing feature utilization. The network is evaluated on a big dataset of 14 challenging modulation formats, including analog and high-order digital techniques. The simulation results demonstrate that Chain-Net robustly classifies the modulation of radio signals suffering from a synthetic channel deterioration and further performs better than other deep networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源