论文标题

使用特权信息的属性自适应边缘损失损失

Attribute Adaptive Margin Softmax Loss using Privileged Information

论文作者

Iranmanesh, Seyed Mehdi, Dabouei, Ali, Nasrabadi, Nasser M.

论文摘要

我们提出了一个新颖的框架,以利用特权信息供识别,这仅在培训阶段提供。在这里,我们专注于识别任务,其中将图像作为主要视图和软生物特征(属性)作为特权数据(仅在培训阶段可用)提供。我们证明,可以通过执行深层网络来调整使用属性的类之间的自适应边缘来学习更多的歧视特征空间。这种紧密的约束还有效地降低了本地数据社区固有的类不平衡,从而在本地划分了更平衡的类边界,并更有效地使用特征空间。在五个不同的数据集上进行了广泛的实验,结果表明,在面部识别和人重新识别的任务中,与最先进的模型相比,我们方法的优越性。

We present a novel framework to exploit privileged information for recognition which is provided only during the training phase. Here, we focus on recognition task where images are provided as the main view and soft biometric traits (attributes) are provided as the privileged data (only available during training phase). We demonstrate that more discriminative feature space can be learned by enforcing a deep network to adjust adaptive margins between classes utilizing attributes. This tight constraint also effectively reduces the class imbalance inherent in the local data neighborhood, thus carving more balanced class boundaries locally and using feature space more efficiently. Extensive experiments are performed on five different datasets and the results show the superiority of our method compared to the state-of-the-art models in both tasks of face recognition and person re-identification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源