论文标题

多观点语义信息检索

Multi-Perspective Semantic Information Retrieval

论文作者

Rawal, Samarth, Baral, Chitta

论文摘要

信息检索(ir)是获得与特定查询或从大量信息存储库中相关的数据(例如文档或文本片段)的任务。尽管已经证明传统的关键字和现代基于BERT的方法在最近的工作中有效,但通常在确定哪些信息与特定查询“相关”通常存在细微差别,而这些查询可能很难使用这些系统正确捕获。这项工作介绍了多个IR系统的概念,一种新颖的方法结合了多个深度学习和传统的IR模型,以更好地预测查询句子对的相关性,以及用于调整该系统的标准化框架。这项工作是在Bioasq生物医学IR + QA挑战上评估的。

Information Retrieval (IR) is the task of obtaining pieces of data (such as documents or snippets of text) that are relevant to a particular query or need from a large repository of information. While a combination of traditional keyword- and modern BERT-based approaches have been shown to be effective in recent work, there are often nuances in identifying what information is "relevant" to a particular query, which can be difficult to properly capture using these systems. This work introduces the concept of a Multi-Perspective IR system, a novel methodology that combines multiple deep learning and traditional IR models to better predict the relevance of a query-sentence pair, along with a standardized framework for tuning this system. This work is evaluated on the BioASQ Biomedical IR + QA challenges.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源