论文标题
弥合现实差距的一般方法
A general approach to bridge the reality-gap
论文作者
论文摘要
在现实世界中采用机器学习模型需要收集大量数据,这既耗时又昂贵。避免这种情况的一种常见方法是利用现有的,类似的数据集和大量标记数据。但是,对这些规范分布进行培训的模型不会容易转移到现实世界中。域的适应性和转移学习通常用于违反此“现实差距”,尽管两者都需要大量的现实数据。在本文中,我们讨论了一种更通用的方法:我们建议学习一种一般的转换,以将任意图像带到一个可以天真地应用经过训练的机器学习模型的规范分布中。这种转变是通过无监督的制度进行训练的,利用数据增强来生成图像的范围示例,并训练一个深度学习模型以恢复其原始对应物。我们使用预训练的成像网分类器量化了这种转换的性能,这表明该过程可以恢复变形的数据集上的性能损失的一半。然后,我们在通过在不同照明条件下打印和拍摄图像收集的现实世界数据集上验证了这种方法对一系列预训练的成像网模型的有效性。
Employing machine learning models in the real world requires collecting large amounts of data, which is both time consuming and costly to collect. A common approach to circumvent this is to leverage existing, similar data-sets with large amounts of labelled data. However, models trained on these canonical distributions do not readily transfer to real-world ones. Domain adaptation and transfer learning are often used to breach this "reality gap", though both require a substantial amount of real-world data. In this paper we discuss a more general approach: we propose learning a general transformation to bring arbitrary images towards a canonical distribution where we can naively apply the trained machine learning models. This transformation is trained in an unsupervised regime, leveraging data augmentation to generate off-canonical examples of images and training a Deep Learning model to recover their original counterpart. We quantify the performance of this transformation using pre-trained ImageNet classifiers, demonstrating that this procedure can recover half of the loss in performance on the distorted data-set. We then validate the effectiveness of this approach on a series of pre-trained ImageNet models on a real world data set collected by printing and photographing images in different lighting conditions.