论文标题

有限的视图断层扫描重建,使用深度重复的框架,并具有残留的密集空间通道注意网络和Sinogram一致性

Limited View Tomographic Reconstruction Using a Deep Recurrent Framework with Residual Dense Spatial-Channel Attention Network and Sinogram Consistency

论文作者

Zhou, Bo, Zhou, S. Kevin, Duncan, James S., Liu, Chi

论文摘要

有限的视图断层扫描重建旨在从有限数量的琴幅或稀疏视图或有限的角度采集引起的投影视图中重建层析成像图像,从而减少辐射剂量或缩短扫描时间。然而,由于辛克图的不完整,这种重建遭受了高噪声和严重的伪影。为了得出质量重建,以前的最新方法使用UNET样神经体系结构直接从有限的视图数据中预测全视图重建;但是这些方法使深度网络体系结构问题在很大程度上完好无损,无法保证重建图像的罪行与获得的正式图之间的一致性,从而导致非理想的重建。在这项工作中,我们提出了一个新颖的经常性重建框架,该框架多次堆叠相同的块。复发块由定制设计的残差密集空间通道注意网络组成。此外,我们开发了在复发框架中交织的正式一致性层,以确保采样的正式图与复发块的中间输出的正弦图一致。我们在两个数据集上评估了我们的方法。我们对AAPM低剂量CT大挑战数据集的实验结果表明,我们的算法在有限的角度重建(在PSNR方面更好)和稀疏视图重建(在PSNR方面更好),对现有的最新神经方法(在PSNR方面更好)方面具有一致而显着的改进。此外,我们对深病变数据集的实验结果表明,我们的方法能够为8种主要病变类型产生高质量的重建。

Limited view tomographic reconstruction aims to reconstruct a tomographic image from a limited number of sinogram or projection views arising from sparse view or limited angle acquisitions that reduce radiation dose or shorten scanning time. However, such a reconstruction suffers from high noise and severe artifacts due to the incompleteness of sinogram. To derive quality reconstruction, previous state-of-the-art methods use UNet-like neural architectures to directly predict the full view reconstruction from limited view data; but these methods leave the deep network architecture issue largely intact and cannot guarantee the consistency between the sinogram of the reconstructed image and the acquired sinogram, leading to a non-ideal reconstruction. In this work, we propose a novel recurrent reconstruction framework that stacks the same block multiple times. The recurrent block consists of a custom-designed residual dense spatial-channel attention network. Further, we develop a sinogram consistency layer interleaved in our recurrent framework in order to ensure that the sampled sinogram is consistent with the sinogram of the intermediate outputs of the recurrent blocks. We evaluate our methods on two datasets. Our experimental results on AAPM Low Dose CT Grand Challenge datasets demonstrate that our algorithm achieves a consistent and significant improvement over the existing state-of-the-art neural methods on both limited angle reconstruction (over 5dB better in terms of PSNR) and sparse view reconstruction (about 4dB better in term of PSNR). In addition, our experimental results on Deep Lesion datasets demonstrate that our method is able to generate high-quality reconstruction for 8 major lesion types.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源