论文标题

事件流的网络点过程的在线估计和社区检测

Online Estimation and Community Detection of Network Point Processes for Event Streams

论文作者

Fang, Guanhua, Ward, Owen G., Zheng, Tian

论文摘要

网络建模的一个共同目标是揭示节点之间存在的潜在社区结构。对于许多现实世界网络,真实的连接包括到达作为流的事件,然后将其汇总为形成边缘,而忽略了动态的时间元件。考虑到相互作用的这些时间动态的一种自然方法是将点过程用作社区检测的网络模型的基础。计算复杂性阻碍了此类方法对大型稀疏网络的可扩展性。为了避免这一挑战,我们建议使用连续的时间点过程潜在的网络模型,提出了一种快速的在线变异推理算法,用于估计网络上的潜在结构。我们描述了捕获社区结构的网络模型的此过程。可以在网络上观察到新事件,从而更新推断的社区作业,从而学习这种结构。我们研究了这种推理方案的理论特性,并就此过程的损失函数提供了遗憾。然后,使用仿真研究和实际数据与非线变体进行彻底比较所提出的推理程序。我们证明,在线推理可以从社区恢复,非线变体方面获得可比的绩效,同时实现计算收益。我们提出的推理框架也很容易修改以结合其他流行的网络结构。

A common goal in network modeling is to uncover the latent community structure present among nodes. For many real-world networks, the true connections consist of events arriving as streams, which are then aggregated to form edges, ignoring the dynamic temporal component. A natural way to take account of these temporal dynamics of interactions is to use point processes as the foundation of network models for community detection. Computational complexity hampers the scalability of such approaches to large sparse networks. To circumvent this challenge, we propose a fast online variational inference algorithm for estimating the latent structure underlying dynamic event arrivals on a network, using continuous-time point process latent network models. We describe this procedure for networks models capturing community structure. This structure can be learned as new events are observed on the network, updating the inferred community assignments. We investigate the theoretical properties of such an inference scheme, and provide regret bounds on the loss function of this procedure. The proposed inference procedure is then thoroughly compared, using both simulation studies and real data, to non-online variants. We demonstrate that online inference can obtain comparable performance, in terms of community recovery, to non-online variants, while realising computational gains. Our proposed inference framework can also be readily modified to incorporate other popular network structures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源