论文标题

在音乐推荐中探索艺术家性别偏见

Exploring Artist Gender Bias in Music Recommendation

论文作者

Shakespeare, Dougal, Porcaro, Lorenzo, Gómez, Emilia, Castillo, Carlos

论文摘要

音乐推荐系统(MRS)旨在向用户群提供个性化和有意义的建议(即歌曲,播放列表或艺术家),从而反映并进一步补充各个用户的特定音乐偏好。尽管精确度指标已被广泛应用于评估MRS文献中的建议,但从其他面向影响的角度(包括歧视的潜力)评估了用户的项目实用程序,但仍然是音乐领域中的一种新评估实践。在这项工作中,我们将注意力集中在一个特定现象上,我们要估计是否会加剧其影响:性别偏见。我们的工作提出了一项探索性研究,分析了最神经合作过滤(CF)算法的普遍部署状态的程度可能会进一步增加或减少艺术家性别偏见。为了评估CF引入的组偏见,我们在两个听力事件数据集上部署了最近提出的偏差差异指标:LFM-1B数据集和较早构造的Celma的数据集。我们的工作追溯了差异的原因,即输入性别分布和用户项目偏好的变化,突出了这种配置在推荐生成后对用户性别偏见的影响。

Music Recommender Systems (mRS) are designed to give personalised and meaningful recommendations of items (i.e. songs, playlists or artists) to a user base, thereby reflecting and further complementing individual users' specific music preferences. Whilst accuracy metrics have been widely applied to evaluate recommendations in mRS literature, evaluating a user's item utility from other impact-oriented perspectives, including their potential for discrimination, is still a novel evaluation practice in the music domain. In this work, we center our attention on a specific phenomenon for which we want to estimate if mRS may exacerbate its impact: gender bias. Our work presents an exploratory study, analyzing the extent to which commonly deployed state of the art Collaborative Filtering(CF) algorithms may act to further increase or decrease artist gender bias. To assess group biases introduced by CF, we deploy a recently proposed metric of bias disparity on two listening event datasets: the LFM-1b dataset, and the earlier constructed Celma's dataset. Our work traces the causes of disparity to variations in input gender distributions and user-item preferences, highlighting the effect such configurations can have on user's gender bias after recommendation generation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源