论文标题

基于深度学习的天线选择,用于FDD大量MIMO中的通道外推

Deep Learning Based Antenna Selection for Channel Extrapolation in FDD Massive MIMO

论文作者

Yang, Yindi, Zhang, Shun, Gao, Feifei, Xu, Chao, Ma, Jianpeng, Dobre, Octavia A.

论文摘要

在大量的多输入多输出(MIMO)系统中,大量天线将为获取准确的通道状态信息带来巨大的挑战,尤其是在频划分双面模式下。为了克服混合波束成形中无线电链路数量有限的瓶颈,我们利用神经网络(NNS)来捕获上行链路和下链链路通道数据集之间的固有连接,并从上链链路状态信息的子集中推出下行链路通道。我们研究天线子集选择问题,以实现最佳的渠道外推并减少NNS的数据大小。概率抽样理论用于将离散天线选择作为连续且可区分的函数近似,这使得深度学习的背部传播可行。然后,我们设计了适当的离线训练策略,以优化天线选择模式和外推NNS。最后,提出数值结果以验证我们提出的大规模MIMO通道外推算法的有效性。

In massive multiple-input multiple-output (MIMO) systems, the large number of antennas would bring a great challenge for the acquisition of the accurate channel state information, especially in the frequency division duplex mode. To overcome the bottleneck of the limited number of radio links in hybrid beamforming, we utilize the neural networks (NNs) to capture the inherent connection between the uplink and downlink channel data sets and extrapolate the downlink channels from a subset of the uplink channel state information. We study the antenna subset selection problem in order to achieve the best channel extrapolation and decrease the data size of NNs. The probabilistic sampling theory is utilized to approximate the discrete antenna selection as a continuous and differentiable function, which makes the back propagation of the deep learning feasible. Then, we design the proper off-line training strategy to optimize both the antenna selection pattern and the extrapolation NNs. Finally, numerical results are presented to verify the effectiveness of our proposed massive MIMO channel extrapolation algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源