论文标题

在Drinfeld模块化形式上,高级V:基本领域上杰出形式的行为

On Drinfeld modular forms of higher rank V: The behavior of distinguished forms on the fundamental domain

论文作者

Gekeler, Ernst-Ulrich

论文摘要

\ begin {document} \开始 本文以相同的标题延续了早期文章的工作。对于两类模块化表格$ f $: \ begin {inatizize} \ item para-eisenstein系列$α_{k} $和 \ item系数$ {} _ a \ ell_ {k} $,其中$ k \ in \ mathbb {n} $和$ a $是$ \ mathbb {f} _ {q} _ {q} [t] $的非代表元素 \ end {inatizize} 基本域和零基因座$ω(F)$的增长行为 以及他们的图像$ \ Mathcal {bt}(f)$中的bruhat-tits构建$ \ mathcal {bt} $的$。我们获得了$ f =α_{k} $的完整描述,以及形式的完整描述 $ {} _ {a} \ ell _ {k} $其中$ k \ leq°a $。事实证明,在这种情况下,$α_{k} $和$ {} _ {a} \ ell_ {k} $与$ \ nathcal {bt}({} _ {a} _} $ \ mathcal {bt}(α_{k})$是$ \ mathbb {q} $的集合 - $ \ mathcal {bt} $的完整子复合点的点,具有不错的属性。作为案例研究,我们详细介绍了形式的结果 $α_{2} $等级3。 \ maketitle \ end {document}

\begin{document} \begin This paper continues work of the earlier articles with the same title. For two classes of modular forms $f$: \begin{itemize} \item para-Eisenstein series $α_{k}$ and \item coefficient forms ${}_a \ell_{k}$, where $k \in \mathbb{N}$ and $a$ is a non-constant element of $\mathbb{F}_{q}[T]$, \end{itemize} the growth behavior on the fundamental domain and the zero loci $Ω(f)$ as well as their images $\mathcal{BT}(f)$ in the Bruhat-Tits building $\mathcal{BT}$ are studied. We obtain a complete description for $f = α_{k}$ and for those of the forms ${}_{a}\ell_{k}$ where $k \leq °a$. It turns out that in these cases, $α_{k}$ and ${}_{a}\ell_{k}$ are strongly related, e.g., $\mathcal{BT}({}_{a}\ell_{k}) = \mathcal{BT}(α_{k})$, and that $\mathcal{BT}(α_{k})$ is the set of $\mathbb{Q}$-points of a full subcomplex of $\mathcal{BT}$ with nice properties. As a case study, we present in detail the outcome for the forms $α_{2}$ in rank 3. \end{abstract} \maketitle \end{document}

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源