论文标题

轨道空间的奇异性分辨率$ g_ {n,2}/t^n $

A resolution of singularities for the orbit spaces $G_{n,2}/T^n$

论文作者

Buchstaber, Victor M., Terzic, Svjetlana

论文摘要

轨道空间的描述$ x_ {n} = g_ {n,2}/t^n $对于复杂的grassmann歧管$ g_ {n,2} $在圆环$ t^n $的标准操作中是广为人知的,并且在数学问题的多样性中出现。如果X_ {N} $中的点$ X \如果其相应的轨道的稳定器不繁琐,则是关键点。在本文中,引入了$ x_n $的单数点的概念,这为该问题打开了新的方法。 It is showed that for $n>4$ the set of critical points $\text{Crit}X_n$ belongs to our set of singular points $\text{Sing}X_{n}$, while the case $n=4$ is somewhat special for which $\text{Sing}X_4\subset \text{Crit}X_4$, but there are critical points which are not singular. 本文的中心结果是构建具有角落的光滑歧管$ u_n $,$ \ dim u_n = \ dim x_n $以及投影$ p_ {n}的明确描述:u_ {n} \ to x__ {n} $,在定义的所有sisse space of Space of Space of Space $ x_n $中的所有sense sense sense s of x_n $ x_n $。因此,我们获得了轨道空间的描述$ g_ {n,2}/t^n $组合结构。此外,$ g_ {n,2} $上的$ t^n $ -action是复杂性$(n-3)$ action的开创性示例。我们的结果证明了对轨道空间的一般描述的方法,以实现积极复杂性的圆环作用。

The problem of the description of the orbit space $X_{n} = G_{n,2}/T^n$ for the standard action of the torus $T^n$ on a complex Grassmann manifold $G_{n,2}$ is widely known and it appears in diversity of mathematical questions. A point $x\in X_{n}$ is said to be a critical point if the stabilizer of its corresponding orbit is nontrivial. In this paper, the notion of singular points of $X_n$ is introduced which opened the new approach to this problem. It is showed that for $n>4$ the set of critical points $\text{Crit}X_n$ belongs to our set of singular points $\text{Sing}X_{n}$, while the case $n=4$ is somewhat special for which $\text{Sing}X_4\subset \text{Crit}X_4$, but there are critical points which are not singular. The central result of this paper is the construction of the smooth manifold $U_n$ with corners, $\dim U_n = \dim X_n$ and an explicit description of the projection $p_{n} : U_{n}\to X_{n}$ which in the defined sense resolve all singular points of the space $X_n$. Thus, we obtain the description of the orbit space $G_{n,2}/T^n$ combinatorial structure. Moreover, the $T^n$-action on $G_{n,2}$ is a seminal example of complexity $(n-3)$ - action. Our results demonstrate the method for general description of orbit spaces for torus actions of positive complexity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源