论文标题
空间变压器点卷积
Spatial Transformer Point Convolution
论文作者
论文摘要
点云是非结构化的,并在嵌入式的3D空间中无序。为了在不同的排列布局下产生一致的响应,大多数现有方法通过最大或求和操作汇总了本地空间点。但是,这样的聚集本质上属于所有操作点上的各向同性过滤,这往往会丢失几何结构的信息。在本文中,我们提出了一种空间变压器点卷积(STPC)方法,以实现对点云上各向异性卷积过滤。为了捕获和表示隐式几何结构,我们专门引入了空间方向词典来学习那些潜在的几何成分。为了更好地编码无序的邻居点,我们设计了稀疏的变形器,以使用方向词典学习将它们转换为规范有序的词典空间。在变换的空间中,可以利用标准图像样卷积来生成各向异性滤波,这更强大,可以表达那些局部区域的更细长的差异。字典学习和编码过程被封装在网络模块中,并以端到端的方式共同学习。在几个公共数据集(包括S3DIS,Semantic3D,Semantickitti)上进行了广泛的实验,证明了我们在点云语义细分任务中提出的方法的有效性。
Point clouds are unstructured and unordered in the embedded 3D space. In order to produce consistent responses under different permutation layouts, most existing methods aggregate local spatial points through maximum or summation operation. But such an aggregation essentially belongs to the isotropic filtering on all operated points therein, which tends to lose the information of geometric structures. In this paper, we propose a spatial transformer point convolution (STPC) method to achieve anisotropic convolution filtering on point clouds. To capture and represent implicit geometric structures, we specifically introduce spatial direction dictionary to learn those latent geometric components. To better encode unordered neighbor points, we design sparse deformer to transform them into the canonical ordered dictionary space by using direction dictionary learning. In the transformed space, the standard image-like convolution can be leveraged to generate anisotropic filtering, which is more robust to express those finer variances of local regions. Dictionary learning and encoding processes are encapsulated into a network module and jointly learnt in an end-to-end manner. Extensive experiments on several public datasets (including S3DIS, Semantic3D, SemanticKITTI) demonstrate the effectiveness of our proposed method in point clouds semantic segmentation task.