论文标题

黑夜:一种非参数可解释的纹理合成方法

NITES: A Non-Parametric Interpretable Texture Synthesis Method

论文作者

Lei, Xuejing, Zhao, Ganning, Kuo, C. -C. Jay

论文摘要

在这项工作中提出了一种非参数可解释的纹理合成方法,称为Nites方法。尽管如今,深层神经网络可以自动综合视觉上令人愉悦的纹理,但相关的生成模型在数学上是棘手的,其训练需要更高的计算成本。 Nites提供了一种新的纹理综合解决方案来解决这些缺点。在数学上是透明的,并且在训练和推理方面有效。输入是单个示例性纹理图像。 Nites方法从输入中散发出斑块,并分析这些纹理斑块的统计特性,以获得其联合空间谱表示。然后,表征了关节空间 - 光谱空间中样品的概率分布。最后,可以自动生成与示例性纹理图像在视觉上相似的许多纹理图像。提供了实验结果,以显示生成的纹理图像的优异质量以及在训练时间和推理时间方面提出的nites方法的效率。

A non-parametric interpretable texture synthesis method, called the NITES method, is proposed in this work. Although automatic synthesis of visually pleasant texture can be achieved by deep neural networks nowadays, the associated generation models are mathematically intractable and their training demands higher computational cost. NITES offers a new texture synthesis solution to address these shortcomings. NITES is mathematically transparent and efficient in training and inference. The input is a single exemplary texture image. The NITES method crops out patches from the input and analyzes the statistical properties of these texture patches to obtain their joint spatial-spectral representations. Then, the probabilistic distributions of samples in the joint spatial-spectral spaces are characterized. Finally, numerous texture images that are visually similar to the exemplary texture image can be generated automatically. Experimental results are provided to show the superior quality of generated texture images and efficiency of the proposed NITES method in terms of both training and inference time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源