论文标题

Zuckerli:图形的新压缩表示形式

Zuckerli: A New Compressed Representation for Graphs

论文作者

Versari, Luca, Comsa, Iulia M., Conte, Alessio, Grossi, Roberto

论文摘要

Zuckerli是一种可扩展的压缩系统,适用于大型现实世界图。众所周知,由于它们的链接性,图是有效存储的挑战性结构,这使得它们很难将它们分为较小,紧凑的组件。因此,在处理大图时有效压缩至关重要,这可能具有数十亿个节点和边缘。此外,良好的压缩系统应使用户快速且合理地灵活地访问压缩数据的一部分,而无需进行全面解压缩,这在其系统上可能是不可行的。 Zuckerli通过使用高级压缩技术和新颖的启发式图算法来改善WebGraph的多个方面,这是压缩现实图形的当前最新图表。它可以生成用于存储的压缩表示形式,也可以允许直接直接访问压缩图的邻接列表,而无需对整个图进行解压缩。我们验证了Zuckerli对最高数十亿节点和900亿边缘的现实图表的有效性,从而对压缩密度和减压性能进行了广泛的实验评估。我们表明,Zuckerli压缩图小于10%至29%,在大多数情况下,Zuckerli压缩图较小,超过20%,并且用于减压的资源使用量可与WebGraph相当。

Zuckerli is a scalable compression system meant for large real-world graphs. Graphs are notoriously challenging structures to store efficiently due to their linked nature, which makes it hard to separate them into smaller, compact components. Therefore, effective compression is crucial when dealing with large graphs, which can have billions of nodes and edges. Furthermore, a good compression system should give the user fast and reasonably flexible access to parts of the compressed data without requiring full decompression, which may be unfeasible on their system. Zuckerli improves multiple aspects of WebGraph, the current state-of-the-art in compressing real-world graphs, by using advanced compression techniques and novel heuristic graph algorithms. It can produce both a compressed representation for storage and one which allows fast direct access to the adjacency lists of the compressed graph without decompressing the entire graph. We validate the effectiveness of Zuckerli on real-world graphs with up to a billion nodes and 90 billion edges, conducting an extensive experimental evaluation of both compression density and decompression performance. We show that Zuckerli-compressed graphs are 10% to 29% smaller, and more than 20% in most cases, with a resource usage for decompression comparable to that of WebGraph.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源