论文标题
从SN发作到成熟的SNR的3D建模:初始喷射各向异性在物质混合中的作用
3D modeling from the onset of the SN to the full-fledged SNR: Role of an initial ejecta anisotropy on matter mixing
论文作者
论文摘要
这项工作的目的是通过研究射出后的探索后各向异性如何影响稍后时间的残留物的结构和化学性质,来弥合CC SNE与残余之间的差距。我们进行了SN事件后不久开始进行的三维磁流动力模拟,并在系统的演变中(由恒星祖细胞的风组成)进行了5000年,获得了SNR的物理情况。在这里,我们将分析集中在19.8 m_sun的祖先红色超级巨人的情况下。我们还研究了SN中的大规模探索大规模各向异性如何影响射出分布和在进化的前5000年中残留物中重元素的物质混合。如果没有大规模各向异性的球形对称SN爆炸,则残留物粗略地记忆了SN事件发生后不久的原始洋葱状分层。然而,随着反向冲击击中喷射,由于与反向冲击的相互作用,元素分布偏离了同源膨胀,因为最外面的喷射层的放缓。在SN之后开发的大规模各向异性的情况下,我们发现可以对喷射物中的化学分层进行深刻的修饰,并且未保留原始的洋葱状分层。各向异性可能会导致弹射层的空间反转,例如导致O壳外Fe/Si-Si-Si-rich弹射器,并可以确定可能会突出残留轮廓的Fe/Si-Si-si-si-si-jet样特征。物质混合的水平和类似喷气的特征的性能对初始物理(密度和速度)和各向异性的几何(大小和位置)初始特征敏感。
The aim of this work is to bridge the gap between CC SNe and their remnants by investigating how post-explosion anisotropies in the ejecta influence the structure and chemical properties of the remnant at later times. We performed three-dimensional magneto-hydrodynamical simulations starting soon after the SN event and following the evolution of the system in the circumstellar medium (consisting of the wind of the stellar progenitor), for 5000 years, obtaining the physical scenario of a SNR. Here we focused the analysis on the case of a progenitor red supergiant of 19.8 M_sun. We also investigated how a post-explosion large-scale anisotropy in the SN affects the ejecta distribution and the matter mixing of heavy elements in the remnant, during the first 5000 years of evolution. In the case of a spherically symmetric SN explosion without large-scale anisotropies, the remnant roughly keeps memory of the original onion-like layering of ejecta soon after the SN event. Nevertheless, as the reverse shock hits the ejecta, the element distribution departs from a homologous expansion, because of the slowing down of the outermost ejecta layers due to interaction with the reverse shock. In the case of a large-scale anisotropy developed after the SN, we found that the chemical stratification in the ejecta can be strongly modified and the original onion-like layering is not preserved. The anisotropy may cause spatial inversion of ejecta layers, for instance leading to Fe/Si-rich ejecta outside the O shell, and may determine the formation of Fe/Si-rich jet-like features that may protrude the remnant outline. The level of matter mixing and the properties of the jet-like feature are sensitive to the initial physical (density and velocity) and geometrical (size and position) initial characteristics of the anisotropy.