论文标题

强的$​​ l^p $ - 在$ b^3 $上有限许多整数奇点的矢量场

The strong $L^p$-closure of vector fields with finitely many integer singularities on $B^3$

论文作者

Caniato, Riccardo

论文摘要

本文的目的是研究强$ l^p $ cluber $ l _ {\ mathbb {z}}^p(b)p(b)$ ball $ b \ subset \ subset \ subset \ mathbb {r}^3 $,它们非常顺畅,以有限地获得许多integer Point Singularities。首先,在[1,+\ infty)$中的任意$ p \ $ p \的特征是如此强大的关闭。其次,显示如果可集成订单$ p $足够大(即,如果$ p \ ge 3/2 $)会发生什么。最终,给出了$ l _ {\ mathbb {z}}^1(b)$中元素的分解定理,以通过$ b $与有限质量连接$ b $的$ by by by b $ b $ by in Integer 1-Current通过质量限制,Integer 1-Current连接此类矢量字段的可能性。

This paper is aimed to investigate the strong $L^p$-closure $L_{\mathbb{Z}}^p(B)$ of the vector fields on the open unit ball $B\subset\mathbb{R}^3$ that are smooth up to finitely many integer point singularities. First, such strong closure is characterized for arbitrary $p\in[1,+\infty)$. Secondly, it is shown what happens if the integrability order $p$ is large enough (namely, if $p\ge 3/2$). Eventually, a decomposition theorem for elements in $L_{\mathbb{Z}}^1(B)$ is given, conveying information about the possibility of connecting the singular set of such vector fields by a mass-minimizing, integer 1-current on $B$ with finite mass.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源