论文标题
通过非线性盲散射器分离的SAR断层扫描
SAR Tomography via Nonlinear Blind Scatterer Separation
论文作者
论文摘要
中上扩散是许多合成孔径应用的基础,例如建筑重建和生物量估计。通常通过SAR成像模型的反转来检索沿混合尺寸(高度)的散射曲线(高度),该过程称为SAR断层扫描。本文提出了一种非线性盲散射器分离方法,以检索放置散射器的相位中心,以避免计算昂贵的层析成像反转。我们证明,常规的线性分离方法,例如原理组件分析(PCA),只能在良好条件下部分分离散射器。这些方法由于散射器转向向量的非正交性而在检索到的散射器中产生系统的相位偏置,尤其是当源的强度相似或图像数量较低时。所提出的方法人为地使用内核PCA增加了数据的维度,从而减轻了上述限制。在处理中,提出的方法使用内核PCA的最亮散射器的估计值顺序对协方差矩阵。模拟证明了所提出的方法在各个方面都超过了基于PCA的常规方法。使用Terrasar-X数据的实验表明,根据使用的外观数量,高度重建精度的提高了一到三倍。
Layover separation has been fundamental to many synthetic aperture radar applications, such as building reconstruction and biomass estimation. Retrieving the scattering profile along the mixed dimension (elevation) is typically solved by inversion of the SAR imaging model, a process known as SAR tomography. This paper proposes a nonlinear blind scatterer separation method to retrieve the phase centers of the layovered scatterers, avoiding the computationally expensive tomographic inversion. We demonstrate that conventional linear separation methods, e.g., principle component analysis (PCA), can only partially separate the scatterers under good conditions. These methods produce systematic phase bias in the retrieved scatterers due to the nonorthogonality of the scatterers' steering vectors, especially when the intensities of the sources are similar or the number of images is low. The proposed method artificially increases the dimensionality of the data using kernel PCA, hence mitigating the aforementioned limitations. In the processing, the proposed method sequentially deflates the covariance matrix using the estimate of the brightest scatterer from kernel PCA. Simulations demonstrate the superior performance of the proposed method over conventional PCA-based methods in various respects. Experiments using TerraSAR-X data show an improvement in height reconstruction accuracy by a factor of one to three, depending on the used number of looks.