论文标题
Lavarnet:多元时间序列的因果关系关系的神经网络建模预测
LAVARNET: Neural Network Modeling of Causal Variable Relationships for Multivariate Time Series Forecasting
论文作者
论文摘要
多元时间序列预测对于许多科学学科和工业领域至关重要。多元时间序列的演变取决于其变量的动力学以及它们之间因果关系的连接网络。现有的大多数时间序列模型都无法解释系统变量之间的因果效应,即使它们这样做也仅依赖于确定可变的因果关系网络。了解这种复杂的网络的结构,甚至更具体地知道有助于基础过程的确切滞后变量对于多元时间序列的任务预测至关重要。后者是要利用的信息来源。在这个方向上,在这里提出了一种新型的基于神经网络的结构,称为滞后变量表示网络(Lavarnet),该网络本质上估计了滞后变量的重要性,并结合了它们的高维度潜在表示以预测时间序列的未来值。将我们的模型与一个模拟数据集上的其他基线和最先进的神经网络体系结构以及来自气象,音乐,太阳活动和金融领域的四个真实数据集进行了比较。在大多数实验中,所提出的架构优于竞争架构。
Multivariate time series forecasting is of great importance to many scientific disciplines and industrial sectors. The evolution of a multivariate time series depends on the dynamics of its variables and the connectivity network of causal interrelationships among them. Most of the existing time series models do not account for the causal effects among the system's variables and even if they do they rely just on determining the between-variables causality network. Knowing the structure of such a complex network and even more specifically knowing the exact lagged variables that contribute to the underlying process is crucial for the task of multivariate time series forecasting. The latter is a rather unexplored source of information to leverage. In this direction, here a novel neural network-based architecture is proposed, termed LAgged VAriable Representation NETwork (LAVARNET), which intrinsically estimates the importance of lagged variables and combines high dimensional latent representations of them to predict future values of time series. Our model is compared with other baseline and state of the art neural network architectures on one simulated data set and four real data sets from meteorology, music, solar activity, and finance areas. The proposed architecture outperforms the competitive architectures in most of the experiments.