论文标题
Jacobi田地和共轭点的投影类喷雾剂
Jacobi fields and conjugate points for a projective class of sprays
论文作者
论文摘要
我们在喷雾剂的背景下研究了雅各比田和共轭点。我们首先证明,在投影变化下,喷雾剂的共轭点仍保留下来。然后,我们在投影因素上建立条件,以便投影变形的喷雾符合确保存在共轭点的命题的条件。在整篇文章中,我们通过说明性示例讨论我们的方法。
We investigate Jacobi fields and conjugate points in the context of sprays. We first prove that the conjugate points of a spray remain preserved under a projective change. Then, we establish conditions on the projective factor so that the projectively deformed spray meets the conditions of a proposition that ensures the existence of conjugate points. We discuss our methods by means of illustrative examples, throughout the paper.