论文标题

网络中的信息来源查找:与预算查询

Information Source Finding in Networks: Querying with Budgets

论文作者

Choi, Jaeyoung, Moon, Sangwoo, Woo, Jiin, Son, Kyunghwan, Shin, Jinwoo, Yi, Yung

论文摘要

在本文中,我们研究了通过查询个体来检测扩散信息来源的问题,鉴于信息扩散图的样本快照,询问了两个查询:{\ em(i)}:{\ em(i)}是否是源,以及{\ em(ii)}是否不存在,如果没有,则邻居将信息传播给受访者。我们认为,当受访者可能并不总是真实的,并且每个查询都需要一定的成本。我们的目标是量化必要和足够的预算,以实现任何给定的$ 0 <δ<1的检测概率$ 1-δ$。$ $,我们研究两种类型的算法:自适应和非自适应算法,每种算法都与我们是否基于先前受访者的答案适应下一个受访者。我们首先为两种算法类型的必要预算提供信息理论下限。就足够的预算而言,我们提出了两种实际估计算法,每种算法,每种算法,而对于每种算法,我们都会定量分析预算,以确保$ 1-δ$检测准确性。这种理论分析不仅量化了实用的估计算法所需的预算,该算法在找到扩散源时达到了给定的目标检测准确性,而且还使我们能够定量地表征非自适应类型的估计中所需的额外预算量的数量,以驳回为{\ em em Adaptitive差距}。我们对合成和现实世界社交网络拓扑的理论发现验证了我们的理论发现。

In this paper, we study a problem of detecting the source of diffused information by querying individuals, given a sample snapshot of the information diffusion graph, where two queries are asked: {\em (i)} whether the respondent is the source or not, and {\em (ii)} if not, which neighbor spreads the information to the respondent. We consider the case when respondents may not always be truthful and some cost is taken for each query. Our goal is to quantify the necessary and sufficient budgets to achieve the detection probability $1-δ$ for any given $0<δ<1.$ To this end, we study two types of algorithms: adaptive and non-adaptive ones, each of which corresponds to whether we adaptively select the next respondents based on the answers of the previous respondents or not. We first provide the information theoretic lower bounds for the necessary budgets in both algorithm types. In terms of the sufficient budgets, we propose two practical estimation algorithms, each of non-adaptive and adaptive types, and for each algorithm, we quantitatively analyze the budget which ensures $1-δ$ detection accuracy. This theoretical analysis not only quantifies the budgets needed by practical estimation algorithms achieving a given target detection accuracy in finding the diffusion source, but also enables us to quantitatively characterize the amount of extra budget required in non-adaptive type of estimation, refereed to as {\em adaptivity gap}. We validate our theoretical findings over synthetic and real-world social network topologies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源