论文标题

用激光解压缩约瑟夫森连接,用于产生缩放的超导量子处理器

Laser-annealing Josephson junctions for yielding scaled-up superconducting quantum processors

论文作者

Hertzberg, Jared B., Zhang, Eric J., Rosenblatt, Sami, Magesan, Easwar, Smolin, John A., Yau, Jeng-Bang, Adiga, Vivekananda P., Sandberg, Martin, Brink, Markus, Chow, Jerry M., Orcutt, Jason S.

论文摘要

随着超导量子电路的规模较大,频率拥挤的问题证明了一项艰巨的任务。在这里,我们在固定频率Qubit架构中提出了解决此问题的解决方案。通过系统地调整量子频率后,我们在设置量子频率的精度上显示出近十倍的提高。为了评估可伸缩性,我们确定会损害Transmon Qubit和交叉谐振门体系结构的“频率碰撞”的类型。使用统计建模,我们计算出逃避所有此类条件的概率,这是量子频率精度的函数。我们发现,如果不进行制作后调整,找到可行的晶格的可能性很快就接近0。但是,通过证明的精确度,可以找到具有良好产量的无碰撞晶格。这些技术和模型目前已在可用的量子系统中使用,并且随着系统继续扩展到更大尺寸而必不可少的。

As superconducting quantum circuits scale to larger sizes, the problem of frequency crowding proves a formidable task. Here we present a solution for this problem in fixed-frequency qubit architectures. By systematically adjusting qubit frequencies post-fabrication, we show a nearly ten-fold improvement in the precision of setting qubit frequencies. To assess scalability, we identify the types of 'frequency collisions' that will impair a transmon qubit and cross-resonance gate architecture. Using statistical modeling, we compute the probability of evading all such conditions, as a function of qubit frequency precision. We find that without post-fabrication tuning, the probability of finding a workable lattice quickly approaches 0. However with the demonstrated precisions it is possible to find collision-free lattices with favorable yield. These techniques and models are currently employed in available quantum systems and will be indispensable as systems continue to scale to larger sizes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源