论文标题
用激光解压缩约瑟夫森连接,用于产生缩放的超导量子处理器
Laser-annealing Josephson junctions for yielding scaled-up superconducting quantum processors
论文作者
论文摘要
随着超导量子电路的规模较大,频率拥挤的问题证明了一项艰巨的任务。在这里,我们在固定频率Qubit架构中提出了解决此问题的解决方案。通过系统地调整量子频率后,我们在设置量子频率的精度上显示出近十倍的提高。为了评估可伸缩性,我们确定会损害Transmon Qubit和交叉谐振门体系结构的“频率碰撞”的类型。使用统计建模,我们计算出逃避所有此类条件的概率,这是量子频率精度的函数。我们发现,如果不进行制作后调整,找到可行的晶格的可能性很快就接近0。但是,通过证明的精确度,可以找到具有良好产量的无碰撞晶格。这些技术和模型目前已在可用的量子系统中使用,并且随着系统继续扩展到更大尺寸而必不可少的。
As superconducting quantum circuits scale to larger sizes, the problem of frequency crowding proves a formidable task. Here we present a solution for this problem in fixed-frequency qubit architectures. By systematically adjusting qubit frequencies post-fabrication, we show a nearly ten-fold improvement in the precision of setting qubit frequencies. To assess scalability, we identify the types of 'frequency collisions' that will impair a transmon qubit and cross-resonance gate architecture. Using statistical modeling, we compute the probability of evading all such conditions, as a function of qubit frequency precision. We find that without post-fabrication tuning, the probability of finding a workable lattice quickly approaches 0. However with the demonstrated precisions it is possible to find collision-free lattices with favorable yield. These techniques and models are currently employed in available quantum systems and will be indispensable as systems continue to scale to larger sizes.