论文标题
限制爱因斯坦的等效原理与多波长极化天体物理源
Constraining Einstein's Equivalence Principle With Multi-Wavelength Polarized astrophysical Sources
论文作者
论文摘要
与天体物理对象不同圆形极化的光子之间观察到的时间延迟提供了一种测试爱因斯坦等效原理(EEP)的新的有趣方法。在本文中,我们通过考虑夏皮罗时间延迟和法拉第旋转效应来限制EEP。我们继续寻找适合于测试EEP准确性的天文来源,并在三个不同的无线电频段(20、8.6和4.8 GHz)中获得60个具有多波长极化角度的外层次无线电源,并在我们自己的乳状星系中获得29个最明亮的星星,其中具有多色线性极化数据的五个光学偏光数据($ ubvri $ ubvri $ ubvri)。我们应用大都市马尔可夫链来模拟拟合参数。最终结果表明,参数化后纽顿后参数$γ$差异的值($Δγ_{p} $)被限制在60个无线电源的$ 10^{ - 26} -26} -26} { - 26} { - 23} $的范围内,范围为60个无线电源,范围为$ 10^{ - 10^{ - 23} { - 23} -10} -10^} -10^{ - 20} $ 29 Optical for 29 Optical for 29 for 29 Optical for 29 for 29。与以前的EEP测试相比,基于伽马射线带中的单个极化测量值,我们的结果具有深远的优势,即在光条和无线电频段中通常可以使用多波长极化观测值的近几十个天体物理源。它确保这些来源可以在EEP上具有更大的强大界限。尽管提出的方法很简单,但由于几乎不考虑影响偏振旋转的其他更复杂的天体物理效应,因此应将其产生的限制视为上限。
The observed time delays between photons with different circular polarizations from an astrophysical object provide a new, interesting way of testing the Einstein Equivalence Principle (EEP). In this paper, we constrain the EEP by considering both Shapiro time delay and Faraday rotation effects. We continue to search for astronomical sources that are suitable for testing the EEP accuracy, and obtain 60 extragalactic radio sources with multi-wavelength polarization angles in three different radio bands (20, 8.6, and 4.8 GHz) and 29 brightest stars within our own Milky Way galaxy with multi-colour linear polarimetric data in five optical bands ($UBVRI$). We apply the Metropolis-Hastings Markov Chain to simulate the fit parameters. The final results show that the values of the parameterized post-Newtonian parameter $γ$ discrepancy ($Δγ_{p}$) are constrained to be in the range of $10^{-26}-10^{-23}$ for 60 radio sources and in the range of $10^{-23}-10^{-20}$ for 29 optical polarization stars. Compared to previous EEP tests that based on the single polarization measurement in the gamma-ray band, our results have profound superiority that nearly a few tens of astrophysical sources with multi-wavelength polarization observations commonly in the optical and radio bands are available. It ensures that these sources can give more significantly robust bounds on the EEP. Although the presented method is straightforward, the resulting constraints on the EEP should be taken as upper limits as other more complex astrophysical effects affecting a polarization rotation are hardly considered.