论文标题

使用智能电表数据和太阳能示例分解客户级的幕后光伏生成

Disaggregating Customer-level Behind-the-Meter PV Generation Using Smart Meter Data and Solar Exemplars

论文作者

Bu, Fankun, Dehghanpour, Kaveh, Yuan, Yuxuan, Wang, Zhaoyu, Guo, Yifei

论文摘要

客户级屋顶光伏(PV)已被广泛集成到配电系统中。在大多数情况下,PV是在幕后安装(BTM),并且仅记录净需求。因此,公用事业未知本地需求和光伏生成。将本地需求和太阳能产生与净需求分开对于改善网格边缘可观察性至关重要。在本文中,提出了一种新颖的方法,用于使用低分辨率但广泛可用的小时智能电表数据分解客户级BTM PV生成。所提出的方法利用了每月夜间和昼夜的本地需求与PV发电概况之间的高相似性之间的密切相关性。首先,使用高斯混合物建模(GMM)构建了每月夜间和昼夜天然需求的联合概率密度函数(PDF)。与构造的PDF的偏差可用于概率地评估使用PVS的每月太阳能生成的客户。然后,为了确定每小时的BTM太阳能生成,他们的估计每月太阳能生成分解为每小时的时间表;为此,我们提出了使用小时典型的太阳示例的最大似然估计(MLE)技术。利用强烈的每月本地需求相关性和高光伏生成相似性,可以增强我们的方法的鲁棒性,以抵抗客户小时负载的波动性,并实现高度准确的分类。已使用实际的本地需求和PV生成数据验证了所提出的方法。

Customer-level rooftop photovoltaic (PV) has been widely integrated into distribution systems. In most cases, PVs are installed behind-the-meter (BTM), and only the net demand is recorded. Therefore, the native demand and PV generation are unknown to utilities. Separating native demand and solar generation from net demand is critical for improving grid-edge observability. In this paper, a novel approach is proposed for disaggregating customer-level BTM PV generation using low-resolution but widely available hourly smart meter data. The proposed approach exploits the strong correlation between monthly nocturnal and diurnal native demands and the high similarity among PV generation profiles. First, a joint probability density function (PDF) of monthly nocturnal and diurnal native demands is constructed for customers without PVs, using Gaussian mixture modeling (GMM). Deviation from the constructed PDF is utilized to probabilistically assess the monthly solar generation of customers with PVs. Then, to identify hourly BTM solar generation for these customers, their estimated monthly solar generation is decomposed into an hourly timescale; to do this, we have proposed a maximum likelihood estimation (MLE)-based technique that utilizes hourly typical solar exemplars. Leveraging the strong monthly native demand correlation and high PV generation similarity enhances our approach's robustness against the volatility of customers' hourly load and enables highly accurate disaggregation. The proposed approach has been verified using real native demand and PV generation data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源