论文标题

局部均质的非梯度准伊因斯坦3个manifolds

Locally Homogeneous Non-gradient Quasi-Einstein 3-Manifolds

论文作者

Lim, Alice

论文摘要

在本文中,我们将紧凑的本地均质非梯度$ m $ -quasi Einstein 3-manifolds分类。在此过程中,我们证明,鉴于任何一个是$ m $ -quasi Einstein的谎言组的紧凑型商,潜在的矢量场$ x $必须保持不变和杀戮。我们还对非平凡的$ m $ quasi爱因斯坦指标进行了分类,这些指标是两个爱因斯坦指标的产品的紧凑商。我们还表明,$ s^1 $是任何维​​度的唯一紧凑型歧管,它承认非试图$ m $ -quasi Einstein和Einstein的度量。

In this paper, we classify the compact locally homogeneous non-gradient $m$-quasi Einstein 3-manifolds. Along the way, we prove that given a compact quotient of a Lie group of any dimension that is $m$-quasi Einstein, the potential vector field $X$ must be left invariant and Killing. We also classify the nontrivial $m$-quasi Einstein metrics that are a compact quotient of be the product of two Einstein metrics. We also show that $S^1$ is the only compact manifold of any dimension which admits a metric which is nontrivially $m$-quasi Einstein and Einstein.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源