论文标题

多模式归纳转移学习以检测阿尔茨海默氏症的痴呆症及其严重性

Multimodal Inductive Transfer Learning for Detection of Alzheimer's Dementia and its Severity

论文作者

Sarawgi, Utkarsh, Zulfikar, Wazeer, Soliman, Nouran, Maes, Pattie

论文摘要

据估计,阿尔茨海默氏病在全球范围内影响约5000万人,并且正在迅速上升,全球经济负担近一万亿美元。这需要可扩展,具有成本效益和可靠的方法来检测阿尔茨海默氏症的痴呆症(AD)。我们提出了一种利用声学,认知和语言特征来形成多模式合奏系统的新型结构。它使用具有时间特征的专门人工神经网络来检测AD及其严重程度,这是通过小型日期化国家考试(MMSE)分数反映的。我们首先在Adress Challenge数据集上对其进行评估,该数据集是一个与受试者无关且平衡的数据集匹配的年龄和性别,以减轻偏见,并且可以通过Dementiabark获得。我们的系统可实现最新的测试准确性,精度,召回和F1得分为83.3%,分别为AD分类,而最先进的测试根平方误差(RMSE)为4.60,用于MMSE得分回归。据我们所知,该系统在完整的基准Dementiabank Pitt数据库中评估时,该系统进一步实现了88.0%的最新AD分类精度。我们的工作强调了自发语音的适用性和可传递性,以产生强大的感应传递学习模型,并通过任务不合时宜的功能空间证明了通用性。源代码可从https://github.com/wazeerzulfikar/alzheimers-dementia获得

Alzheimer's disease is estimated to affect around 50 million people worldwide and is rising rapidly, with a global economic burden of nearly a trillion dollars. This calls for scalable, cost-effective, and robust methods for detection of Alzheimer's dementia (AD). We present a novel architecture that leverages acoustic, cognitive, and linguistic features to form a multimodal ensemble system. It uses specialized artificial neural networks with temporal characteristics to detect AD and its severity, which is reflected through Mini-Mental State Exam (MMSE) scores. We first evaluate it on the ADReSS challenge dataset, which is a subject-independent and balanced dataset matched for age and gender to mitigate biases, and is available through DementiaBank. Our system achieves state-of-the-art test accuracy, precision, recall, and F1-score of 83.3% each for AD classification, and state-of-the-art test root mean squared error (RMSE) of 4.60 for MMSE score regression. To the best of our knowledge, the system further achieves state-of-the-art AD classification accuracy of 88.0% when evaluated on the full benchmark DementiaBank Pitt database. Our work highlights the applicability and transferability of spontaneous speech to produce a robust inductive transfer learning model, and demonstrates generalizability through a task-agnostic feature-space. The source code is available at https://github.com/wazeerzulfikar/alzheimers-dementia

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源