论文标题
在两腿指南针梯子中无序定位的对数纠缠增长
Logarithmic entanglement growth from disorder-free localization in the two-leg compass ladder
论文作者
论文摘要
我们探讨了准轨道指南针和plaquette ising模型的有限温度动力学。我们将这些系统映射到一个自由费用模型上,该模型与严格局部的自旋1/2自由度相结合。在有限的温度下,局部自由度是新兴疾病并将其定位的。尽管可以使用自由屈服技术对模型进行分析,但它具有与典型的多体局部系统共同的动态签名:从通用初始状态开始,纠缠逐渐增长;此外,与温度和模型参数连续变化的指数的平衡动力相关函数衰减。这些准1D模型提供了一个可实现的设置,其中自然动力学探针显示出无序的多体定位的特征。
We explore the finite-temperature dynamics of the quasi-1D orbital compass and plaquette Ising models. We map these systems onto a model of free fermions coupled to strictly localized spin-1/2 degrees of freedom. At finite temperature, the localized degrees of freedom act as emergent disorder and localize the fermions. Although the model can be analyzed using free-fermion techniques, it has dynamical signatures in common with typical many-body localized systems: Starting from generic initial states, entanglement grows logarithmically; in addition, equilibrium dynamical correlation functions decay with an exponent that varies continuously with temperature and model parameters. These quasi-1D models offer an experimentally realizable setting in which natural dynamical probes show signatures of disorder-free many-body localization.