论文标题

操作与卷积神经网络用于图像denoising

Operational vs Convolutional Neural Networks for Image Denoising

论文作者

Malik, Junaid, Kiranyaz, Serkan, Gabbouj, Moncef

论文摘要

卷积神经网络(CNN)由于其自适应学习能力,尤其是具有深层配置,因此最近已成为图像denoing的一种偏爱技术。但是,由于它们的同质网络形成,其效力本质上是限制的,并具有线性卷积的独特使用。在这项研究中,我们提出了一个异质网络模型,该模型允许在数据转换核心嵌入额外的非线性性方面具有更大的灵活性。为此,我们提出了操作神经元或操作神经网络(ONN)的想法,该想法实现了使用层间和内部神经元多样性的灵活的非线性和异质构型。此外,我们提出了一个受HEBBIAN理论启发的强大操作员搜索策略,称为突触可塑性监测(SPM),该策略可以为任何体系结构中的非线性做出数据驱动的选择。对两个严重的图像降低问题的ONN和CNN的广泛比较评估产生了确定的证据,即非线性操作员富含的ONN可以实现与具有等效和众所周知深层配置的CNN的卓越脱氧性能。

Convolutional Neural Networks (CNNs) have recently become a favored technique for image denoising due to its adaptive learning ability, especially with a deep configuration. However, their efficacy is inherently limited owing to their homogenous network formation with the unique use of linear convolution. In this study, we propose a heterogeneous network model which allows greater flexibility for embedding additional non-linearity at the core of the data transformation. To this end, we propose the idea of an operational neuron or Operational Neural Networks (ONN), which enables a flexible non-linear and heterogeneous configuration employing both inter and intra-layer neuronal diversity. Furthermore, we propose a robust operator search strategy inspired by the Hebbian theory, called the Synaptic Plasticity Monitoring (SPM) which can make data-driven choices for non-linearities in any architecture. An extensive set of comparative evaluations of ONNs and CNNs over two severe image denoising problems yield conclusive evidence that ONNs enriched by non-linear operators can achieve a superior denoising performance against CNNs with both equivalent and well-known deep configurations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源