论文标题

Morph-Dslam:基于物理可变形的大满贯的模型订单降低

MORPH-DSLAM: Model Order Reduction for PHysics-based Deformable SLAM

论文作者

Badias, Alberto, Alfaro, Iciar, Gonzalez, David, Chinesta, Francisco, Cueto, Elias

论文摘要

我们提出了一种新方法,以使用标准单眼摄像机从视频序列中估算可变形对象的3D位移场。我们实时解决完整的(可能是粘膜)的超弹性问题,以正确描述与图像捕获的位移相一致的应变和应力场,这些位移受实际物理的约束。由于解决了真实和完整的机械问题,因此我们不会在外面施加任何临时事先或能量最小化。这意味着我们还可以通过观察外表面以及材料特性和几何形状的知识来估算物体的内部状态,即使在被遮挡的区域。对于当前系统,使用现实的本构法(通常是非线性)实时解决此问题。为了克服这一难度,我们解决了一个参数化问题,该问题将问题中的每个可变性视为新参数,因此,将其视为公式中的新维度。模型订购降低方法使我们能够降低问题的维度,因此,其计算成本,同时保留在高差异空间中解决方案的可视化。这允许对对象变形进行准确的估计,从而提高了3D点估计中的鲁棒性。

We propose a new methodology to estimate the 3D displacement field of deformable objects from video sequences using standard monocular cameras. We solve in real time the complete (possibly visco-)hyperelasticity problem to properly describe the strain and stress fields that are consistent with the displacements captured by the images, constrained by real physics. We do not impose any ad-hoc prior or energy minimization in the external surface, since the real and complete mechanics problem is solved. This means that we can also estimate the internal state of the objects, even in occluded areas, just by observing the external surface and the knowledge of material properties and geometry. Solving this problem in real time using a realistic constitutive law, usually non-linear, is out of reach for current systems. To overcome this difficulty, we solve off-line a parametrized problem that considers each source of variability in the problem as a new parameter and, consequently, as a new dimension in the formulation. Model Order Reduction methods allow us to reduce the dimensionality of the problem, and therefore, its computational cost, while preserving the visualization of the solution in the high-dimensionality space. This allows an accurate estimation of the object deformations, improving also the robustness in the 3D points estimation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源