论文标题

具有积极潜力的平面Schrödinger-Poisson系统

The planar Schrödinger-Poisson system with a positive potential

论文作者

Azzollini, Antonio

论文摘要

在本文中,我们考虑问题\ begin {equination*} \ left {\ begin {array} {l} {l}-ΔU\ pm ϕu + w'(x,x,x,u)= 0 \ hbox {in} \ end {array} \ right。 \ end {equation*},其中$ w $假定为正。在第三维中,符号 +(我们称其为$(\ Mathcal p _ +)$)的问题被考虑并在\ cite {m}中解决,而在同一篇论文中,如果我们考虑符号,则不存在非平凡的解决方案 - (假设它$(\ Mathcal p _--))$)。我们为$(\ Mathcal p _+)$提供了一个一般存在的结果,并且在情况下至少存在至少一个非平凡的解决方案的情况。

In this paper we consider the problem \begin{equation*} \left \{ \begin{array}{l} -Δu \pm ϕu + W'(x,u) = 0\hbox{ in } \mathbb{R}^2,\newline Δϕ= u^2 \hbox{ in } \mathbb{R}^2, \end{array} \right. \end{equation*} where $W$ is assumed positive. In dimension three, the problem with the sign + (we call it $(\mathcal P_+)$) was considered and solved in \cite{M}, whereas in the same paper it was showed that no nontrivial solution exists if we consider the sign -- (say it $(\mathcal P_-)$). We provide a general existence result for $(\mathcal P_+)$ and two examples falling in the case $(\mathcal P_-)$ for which there exists at least a nontrivial solution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源