论文标题
用于分裂四个算法的算法
An algorithm for dividing quaternions
论文作者
论文摘要
在这项工作中,提出了用于计算两个四季度商的合理化算法,从而减少了基础实际乘法的数量。快速乘法的硬件比硬件要昂贵得多,以便快速添加。因此,减少VLSI处理器设计中的乘法数量通常是理想的任务。使用NAIVE方法对季节的执行需要16个乘法,15个添加,4个正方形和4个实数划分,而所提出的算法只能在8个乘法中计算相同的结果(或在硬件实施情况中的乘数),31个添加器,4个平方和4个实数分配。
In this work, a rationalized algorithm for calculating the quotient of two quaternions is presented which reduces the number of underlying real multiplications. Hardware for fast multiplication is much more expensive than hardware for fast addition. Therefore, reducing the number of multiplications in VLSI processor design is usually a desirable task. The performing of a quaternion division using the naive method takes 16 multiplications, 15 additions, 4 squarings and 4 divisions of real numbers while the proposed algorithm can compute the same result in only 8 multiplications (or multipliers in hardware implementation case), 31 additions, 4 squaring and 4 division of real numbers.