论文标题

对默克的猜想在3个连接的立方平面图上具有较大循环频谱间隙

Counterexamples to a conjecture of Merker on 3-connected cubic planar graphs with a large cycle spectrum gap

论文作者

Zamfirescu, Carol T.

论文摘要

默克(Merker)猜想,如果$ k \ ge 2 $是整数,而$ g $ a 3连接的立方体平面图至少$ k $,则$ g $的周期长度的集合必须至少包含间隔$ [k,2k,2k+2] $的至少一个元素。我们在这里证明,对于每一个均匀的整数$ k \ ge 6 $,都有一个无限的反例。

Merker conjectured that if $k \ge 2$ is an integer and $G$ a 3-connected cubic planar graph of circumference at least $k$, then the set of cycle lengths of $G$ must contain at least one element of the interval $[k, 2k+2]$. We here prove that for every even integer $k \ge 6$ there is an infinite family of counterexamples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源