论文标题

在Kerr-nut-de保姆的空间中,投影范围的地平线

Projectively non-singular horizons in Kerr-NUT-de Sitter spacetimes

论文作者

Lewandowski, Jerzy, Ossowski, Maciej

论文摘要

最近发现,通用的kerr-nut-(anti)de Sitter SpaceTimes的杀戮视野在投影上是单数的,即它们的空发电机的空间具有单数的几何形状。只有宇宙常数采用由kerr和螺母参数确定的特殊值以及地平线的半径,那么相应的地平线不会遭受该问题。在当前论文中,研究了投影的非单一视野。他们被发现是宇宙学和非超生物。 Every projectively non-singular horizo​​n can be used to define a global completion of the Kerr-NUT-de Sitter spacetime it is contained in. The resulting spacetime extends from $\mathcal{I}^-$ to $\mathcal{I}^+$, has the topology of $\mathbb{R}\times S_3$ and is smooth except for a possible Kerr-like singularity.

It was recently discovered that Killing horizons in the generic Kerr-NUT-(anti) de Sitter spacetimes are projectively singular, i.e. their spaces of the null generators have singular geometry. Only if the cosmological constant takes the special value determined by the Kerr and NUT parameters, and the radius of the horizon, then the corresponding horizon does not suffer that problem. In the current paper, the projectively non-singular horizons are investigated. They are found to be cosmological and non-extremal. Every projectively non-singular horizon can be used to define a global completion of the Kerr-NUT-de Sitter spacetime it is contained in. The resulting spacetime extends from $\mathcal{I}^-$ to $\mathcal{I}^+$, has the topology of $\mathbb{R}\times S_3$ and is smooth except for a possible Kerr-like singularity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源