论文标题

主要手性模型的Yang-Baxter变形以及Wess-Zumino术语

Yang-Baxter deformations of the Principal Chiral Model plus Wess-Zumino term

论文作者

Hoare, B., Lacroix, S.

论文摘要

主手性模型的一大一类可集成变形,称为杨 - 巴克斯特变形,由偏斜的对称R-Matrices求解(修改)经典的Yang-baxter方程。我们在韦斯 - 祖米诺(Wess-Zumino)术语的存在下对简单的谎言组进行了系统的研究,以在同一基础上处理不均匀和同质变形的框架。在分析了可容纳这种变形的同胞条件之后,我们考虑了主要手性模型的一般杨 - 巴克斯特变形,以及wess-zumino术语的一般性,并证明其经典的一致性。我们还显示了如何从许多替代配方中找到该模型:仿射高丁模型,电子模型,4维的Chern-Simons理论以及对于均匀变形,非亚洲T-二维。

A large class of integrable deformations of the Principal Chiral Model, known as the Yang-Baxter deformations, are governed by skew-symmetric R-matrices solving the (modified) classical Yang-Baxter equation. We carry out a systematic investigation of these deformations in the presence of the Wess-Zumino term for simple Lie groups, working in a framework that treats both inhomogeneous and homogeneous deformations on the same footing. After analysing the cohomological conditions under which such a deformation is admissible, we consider an action for the general Yang-Baxter deformation of the Principal Chiral Model plus Wess-Zumino term and prove its classical integrability. We also show how the model is found from a number of alternative formulations: affine Gaudin models, E-models, 4-dimensional Chern-Simons theory and, for homogeneous deformations, non-abelian T-duality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源